Altered dopamine release and uptake kinetics in mice lacking D2 receptors.

نویسندگان

  • Yvonne Schmitz
  • Claudia Schmauss
  • David Sulzer
چکیده

Dysregulation of dopamine transmission is thought to contribute to schizophrenic psychosis and drug dependence. Dopamine release is regulated by D2 dopamine autoreceptors, and D2 receptor ligands are used to treat psychosis and addiction. To elucidate the long-term effects of D2 autoreceptor activity on dopamine signaling, dopamine overflow evoked by single or paired-pulse stimulation was compared in striatal slices from D2-null mutant and wild-type mice. Quinpirole, a D2/D3 receptor agonist, had no effect on evoked dopamine release in D2 mutant mice, indicating that D2 receptors are the only release-regulating receptors at the axon terminal. Dopamine release inhibition by GABA(B) receptor activation was unchanged in D2 mutant mice, suggesting that other G-protein-coupled pathways remained normal in the absence of D2 autoreceptors. Paired-pulse stimulation revealed that autoinhibition of dopamine release was maximal 500 msec after stimulation and lasted <5 sec. In D2-null mutants, dopamine overflow in response to single stimuli was severely decreased. Experiments with the uptake inhibitor nomifensine indicated that this was caused by enhanced dopamine uptake rather than reduced release. Analysis of dopamine overflow kinetics using a simulation model suggested that the enhanced uptake was caused by an increase in the maximal velocity of uptake, V(max). These results from D2-null mutant mice support the suggestion that D2 autoreceptors and dopamine transporters interact to regulate the amplitude and timing of dopamine signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice lacking the alpha4 nicotinic receptor subunit fail to modulate dopaminergic neuronal arbors and possess impaired dopamine transporter function.

Neuronal nicotinic acetylcholine receptors (nAChRs) at presynaptic sites can modulate dopaminergic synaptic transmission by regulating dopamine (DA) release and uptake. Dopaminergic transmission in nigrostriatal and mesolimbic pathways is vital for the coordination of movement and is associated with learning and behavioral reinforcement. We reported recently that the D2 DA receptor plays a cent...

متن کامل

Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores.

Amphetamine (AMPH) is known to raise extracellular dopamine (DA) levels by inducing stimulation-independent DA efflux via reverse transport through the DA transporter and by inhibiting DA re-uptake. In contrast, recent studies indicate that AMPH decreases stimulation-dependent vesicular DA release. One candidate mechanism for this effect is the AMPH-mediated redistribution of DA from vesicles t...

متن کامل

The Effect of Inhibition of Dopamine D2 Receptors on Some of the Peripheral Blood Mononuclear Cells of the Rat under Food restriction

Background & Objective: In previous studies, the effects of food restriction on the changes in immune responses and brain dopamine content have been determined. On the other hand, it has been shown that immune cells, in addition to dopamine production, also have dopamine receptors. The purpose of this study was to evaluate the effect of inhibition of D2 dopamine receptors on several functions o...

متن کامل

Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors.

An increase of extracellular dopamine (DA) concentration is a major neurobiological substrate of the addictive properties of drugs of abuse. In this article we investigated the contribution of the DA D2 receptor (D2R) in the control of this response. Extracellular DA levels were measured in the striatum of mice lacking D2R expression (D2R-/-) by in vivo microdialysis after administration of the...

متن کامل

Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase B.

Monoamine oxidase (MAO) B is considered a key enzyme in dopamine metabolism. The present studies, conducted in MAO B knockout mice, show that lack of MAO B does not alter extracellular levels of dopamine in striatum. Similarly, the synthesis, storage, uptake, and release of dopamine are also unaltered. However, autoradiography revealed a significant up-regulation of the D2-like dopamine recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2002